Scientific products of exo/astrobiology

Following up on my last blog post, here’s a list of “top papers in astrobiology” prepared in 2007.

One could assemble a “top papers in astrobiology” list according to any number of criteria. This list of “Key Papers in Astrobiology, 1998-2007” originally was prepared in 2007 as input for a National Research Council study. It roughly tracks with the goals of the “roadmap” for NASA’s Astrobiology Program. It focuses primarily on papers in Science, Nature, PNAS, and annual reviews and does not include papers published in astrobiology journals or other highly specialized publications. The papers on the list are not necessarily the first to report on a particular theory or finding or the most cited. Much, but not all, of the research reported was supported by NASA’s exo/astrobiology program (for example, while research on biosignatures is funded by NASA’s astrobiology program, much of the work in planetary formation and extrasolar planet searching is funded by NASA’s astronomy and astrophysics program). I have brief abstracts for many of these papers. If you’re interested in those abstracts, let me know, and I’ll post them here.

Organic molecules in interstellar space:

* D.M. Hudgins, C.W. Bauschlicher Jr., L.J. Allamandola, Variations in the peak position of the 6.2 m interstellar emission feature: a tracer of N in the interstellar polycyclic aromatic hydrocarbon population, Astrophysical Journal 632: 316-332, 2005.

* P. Ehrenfreund, M.P. Bernstein, J.P. Dworkin, S.A. Sandford, L.J. Allamondola, The photostability of amino acids in space, Analysis of complex organic chemistry in interstellar clouds, Astrophysical Journal Letters 550: 95-99, 2001.

Formation of planets:

* A. Boss, Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks, Astrophysical Journal, 536: 101–104, 2000.

  • Also see A. Boss, Gas giant protoplanet formation: disk instability models with thermodynamics and radiative transfer, Astrophysical Journal 563: 367–373, 2001; A. Boss, Convective cooling of protoplanetary disks and rapid giant planet formation, Astrophysical Journal 576: 462-472, 2002; A. Boss, Evolution of the solar nebula: disk instabilities with varied thermodynamics, Astrophysical Journal 610: 456–463, 2004).

* K. Tsiganis, R. Gomes, A. Morbidelli, and  H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System, Nature 435: 459-461, 2005.

  • Also see R. Gomes, H. F. Levison, K. Tsiganis, and A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature 435: 466-468, 2005.

The search for extrasolar planets:

* R.P. Butler, J.T. Wright, G.W. Marcy, D.A. Fischer, S.S. Vogt, C.G. Tinney, H.R.A. Jones, B.D. Carter, J.A. Johnson, C. McCarthy, A.J. Penny, Catalog of nearby exoplanets, Astrophysical Journal 646: 505–522, 2006.

  • Also see G. Marcy and P. Butler, Detection of extrasolar giant planets, Annual Review of Astronomy and Astrophysics 36: 57-97, 1998; G.W. Marcy, R.P. Butler, S.S. Vogt, D.A. Fischer, G.W. Henry, G. Laughlin, J.T. Wright, and J.A. Johnson, Five new extrasolar planets, Astrophysical Journal 619: 570–584, 2005.

Planetary biosignatures:

* V. Meadows, Modeling the diversity of extrasolar terrestrial planets, Proceedings of the International Astronomical Union 1: 25-34, 2005.

  • Also see G. Tinetti, V. Meadows, D. Crisp, N. Kiang, W. Fong, E. Fishbein, T. Velusamy, E. Bosc, and M. Turnbull, Detectability of planetary surface biosignatures: modeled and measured disk-averaged spectra of the Earth, Geophysical Research Abstracts, 2005.

* G. A. Tinetti, A. Vidal-Madjar, M. Liang, J. Beaulieu, Y. Yung, S. Carey, R.J. Barber, J. Tennyson, I. Ribas, N. Allard, G.E. Ballester, D.K. Sing, and F. Selsis, Water vapour in the atmosphere of a transiting extrasolar planet, Nature 448: 169–171, 2007. [first detection of water vapor in the atmosphere of an extrasolar planet]

Organic molecules in interplanetary space:

Cooper, N. Kimmich, W. Belisle, J. Sarinana, K. Brabham and L. Garrel, Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, Nature 414: 879-882, 2001.

* S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, and M. Williams, The organic content of the Tagish Lake meteorite, Science 293: 2236-2239, 2001.

• Also see S. Pizzarello, The chemistry of life’s origin: a carbonaceous meteorite perspective, Accounts of Chemical Research 39(4): 231-237, 2006; S. Pizzarello and A.L. Weber, Prebiotic amino acids as asymmetric catalysts, Science 303: 1151, 2004.

Origin(s) of life on Earth:

* J.J. Brocks, G.A. Logan, R. Buick, and R.E. Summons, Archean molecular fossils and the early rise of eukaryotes, Science 285: 1033-1036, 1999.

* G.D. Cody, N.B. Boctor, T.R. Filley, R.M. Hazen, J.H. Scott, A. Sharma, and H.S. Yoder Jr., Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate, Science 289: 1337-1340, 2000.

  • Also see A. Sharma, J.H. Scott, G.D. Cody, M.L. Fogel, R.M. Hazen, R.J. Hemley, W.T. Huntress, Microbial activity at gigapascal pressures, Science 295: 1514-1516, 2002.

* P.A. Monnard, A. Luptak, and D.W. Deamer, Models of primitive cellular life: polymerases and templates in liposomes, Philosophical Transactions of the Royal Society of London (B Biol Sci), May 2, 2007.

  • Also see P.A. Monnard, D.W. Deamer, Membrane self-assembly processes: steps toward the first cellular life. The Anatomical Record 268: 196-207, 2002.

* E. Gaucher, J.M. Thompson, M.F. Burgan, and S.A. Benner, Inferring the paleoenvironment of ancient bacteria on the basis of resurrected proteins, Nature 425: 285-288, 2003.

* A. Ricardo, M.A. Carrigan, A.N. Olcott, S.A. Benner, Borate minerals stabilize ribose, Science 303: 196, 2004.

* J. Grotzinger and A. Knoll, Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?, Annual Review of Earth and Planetary Sciences 27: 313-358, 1999.

The nature of life/molecular evolution:

* C.R. Woese, O. Kandler, and M.L. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, PNAS 87: 4576-4579, 1990.

  • Also see K. Vetsigian, C.R. Woese, and N. Goldenfeld, PNAS 103: 10696–10701, 2006; C.R. Woese, Microbiol. Mol. Biol. Rev. 68: 173–186, 2004.

* N.R. Pace, A molecular view of microbial diversity and the biosphere, Science 276: 734-740, 1997.

  • Also see N.R. Pace, Time for a change: Prokaryote gene-sequence comparisons show the tree of life consists of bacteria, eukarya and archaea, Nature 441: 289, 2006.

* G. Joyce, The antiquity of RNA-based evolution, Nature 418: 214-221, 2002.

* J. Szostak, D.P. Bartel, and P.L. Luigi, Synthesizing life, Nature 409: 387-390, 2001.

* M.L. Sogin, H.G. Morrison, J.A. Huber, D.M. Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl, Microbial diversity in the deep sea and the underexplored “rare biosphere,” PNAS 103: 12115-12120, 2006.

* J. Raymond, O. Zhaxybayeva, J.P Gogarten, S.Y. Gerdes, R.E. Blankenship, Whole-genome analysis of photosynthetic prokaryotes, Science 298: 1616-1620, 2002.

* R.E. Michod and D. Roze, Cooperation and conflict in the evolution of multicellularity, Heredity 86: 1-7, 2001.

Life in extreme environments:

* L. Lin, P. Wang, D. Rumble, J. Lippmann-Pipke, E. Boice, L.M. Pratt, B. Sherwood Lollar, E.L. Brodie, T.C. Hazen, G.L. Andersen, T.Z. DeSantis, D.P. Moser, D. Kershaw, and T.C. Onstott, Long-term sustainability of a high-energy, low-diversity crustal biome, Science 314: 479-482, 2006.

  • Also see K. Takai, D.P. Moser, T.C. Onstott, N. Spoelstra, S.M. Pfiffner, A. Dohnalkova, and J.K. Fredrickson, Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine, International Journal of Systematic and Evolutionary Microbiology, Vol 51, 1245-1256, 2001.

* J.T. Beatty, J. Overmann, M.T. Lince , A.K. Manske , A.S. Lang, R.E. Blankenship , C.L. Van Dover, T.A. Martinson, and F.G. Plumley, An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent, PNAS 102(26): 90306-9310, 2005.

Habitability of extraterrestrial environments in our solar system/search for evidence of life in our solar system:

J.T. Perron, J.X. Mitrovica, M. Manga, I. Matsuyama, and M.A. Richards, Evidence for an ancient martian ocean in the topography of deformed shorelines, Nature 447: 840-843, 2007.

* C. Chyba, Energy for microbial life on Europa, Nature 403: 381-382, 2000.

  • Also see C. Chyba and C. Phillips, Possible ecosystems and the search for life on Europa, PNAS 98: 801-804, 2001.

* M.G. Trainer, A.A. Pavlov, H.L. DeWitt, J.L. Jimenez, C.P. McKay, O.B. Toon, and M.A. Tolbert, Organic haze on Titan and the early Earth, PNAS 103: 18035-18042, 2006.

The distribution and future of life in the universe:

* N.R. Pace, The universal nature of biochemistry, PNAS 98(3): 805-808, 2001.

* S.A. Benner, A. Ricardo, and M.A. Carrigan, Is there a common chemical model for life in the universe?, Current Opinion in Chemical Biology 8(6):  672-689.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 429 other followers

%d bloggers like this: